Search results
Results from the WOW.Com Content Network
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency.
For a two dimensional phase retrieval problem, there is a degeneracy of solutions as () and its conjugate () have the same Fourier modulus. This leads to "image twinning" in which the phase retrieval algorithm stagnates producing an image with features of both the object and its conjugate. [3]
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration ...
This generalizes the Fourier transform to all spaces of the form L 2 (G), where G is a compact group, in such a way that the Fourier transform carries convolutions to pointwise products. The Fourier series exists and converges in similar ways to the [−π,π] case.
Some problems, such as certain differential equations, become easier to solve when the Fourier transform is applied. In that case the solution to the original problem is recovered using the inverse Fourier transform. In applications of the Fourier transform the Fourier inversion theorem often plays a critical role. In many situations the basic ...
The inverse transform, known as Fourier series, is a representation of () in terms of a summation of a potentially infinite number of harmonically related sinusoids or complex exponential functions, each with an amplitude and phase specified by one of the coefficients:
Hence, at a particular frequency, the sine transform and the cosine transform together essentially only represent one sine wave that could have any phase shift. An advantage of the modern Fourier transform is that while the sine and cosine transforms together are required to extract the phase information of a frequency, the modern Fourier ...
The short-time Fourier transform (STFT) is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. [1] In practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of equal length and then compute the Fourier ...