Search results
Results from the WOW.Com Content Network
Bioelectromagnetics, also known as bioelectromagnetism, is the study of the interaction between electromagnetic fields and biological entities. Areas of study include electromagnetic fields produced by living cells, tissues or organisms, the effects of man-made sources of electromagnetic fields like mobile phones, and the application of electromagnetic radiation toward therapies for the ...
Development of pulsed electromagnetic field (PEMF) therapy has been problematical because of the lack of scientifically-derived, evidence-based knowledge of the mechanism of action. For example, PEMF therapy used by plastic surgeons the management of postsurgical pain and edema, [ 11 ] has been criticized for not having a body of evidence for ...
The sensing of magnetic fields by organisms is known as magnetoreception. Biological effects of weak low frequency magnetic fields, less than about 0.1 millitesla (or 1 Gauss) and 100 Hz correspondingly, constitutes a physics problem. The effects look paradoxical, for the energy quantum of these electromagnetic fields is by many orders of value ...
The heating effect varies with the power and the frequency of the electromagnetic energy, as well as the inverse square of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup. [7]
In physics, electromagnetic radiation (EMR) is the set of waves of an electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. [ 1 ] [ 2 ] Classically , electromagnetic radiation consists of electromagnetic waves , which are synchronized oscillations of electric and magnetic fields .
The FCC regulations for SAR are contained in 47 C.F.R. 1.1307(b), 1.1310, 2.1091, 2.1093 and also discussed in OET Bulletin No. 56, "Questions and Answers About the Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields." [8]
Electromagnetic induction has not been studied in non-aquatic animals. [9] The yellow stingray, Urobatis jamaicensis, is able to distinguish between the intensity and inclination angle of a magnetic field in the laboratory. This suggests that cartilaginous fishes may use the Earth's magnetic field for navigation.
An RF electromagnetic wave has both an electric and a magnetic component (electric field and magnetic field), and it is often convenient to express the intensity of the RF environment at a given location in terms of units specific to each component. For example, the unit "volts per meter" (V/m) is used to express the strength of the electric ...