enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    In the center of mass frame the kinetic energy is the lowest and the total energy becomes = ˙ + The coordinates x 1 and x 2 can be expressed as = = and in a similar way the energy E is related to the energies E 1 and E 2 that separately contain the kinetic energy of each body: = = ˙ + = = ˙ + = +

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    This equation states that the kinetic energy (E k) is equal to the integral of the dot product of the momentum (p) of a body and the infinitesimal change of the velocity (v) of the body. It is assumed that the body starts with no kinetic energy when it is at rest (motionless).

  4. Reduced mass - Wikipedia

    en.wikipedia.org/wiki/Reduced_mass

    In a collision with a coefficient of restitution e, the change in kinetic energy can be written as = (), where v rel is the relative velocity of the bodies before collision. For typical applications in nuclear physics, where one particle's mass is much larger than the other the reduced mass can be approximated as the smaller mass of the system.

  5. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    On average, two atoms rebound from each other with the same kinetic energy as before a collision. Five atoms are colored red so their paths of motion are easier to see. In physics , an elastic collision is an encounter ( collision ) between two bodies in which the total kinetic energy of the two bodies remains the same.

  6. Inelastic collision - Wikipedia

    en.wikipedia.org/wiki/Inelastic_collision

    In such a collision, kinetic energy is lost by bonding the two bodies together. This bonding energy usually results in a maximum kinetic energy loss of the system. It is necessary to consider conservation of momentum: (Note: In the sliding block example above, momentum of the two body system is only conserved if the surface has zero friction.

  7. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.

  8. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Kinetic energy T is the energy of the system's motion and is a function only of the velocities v k, not the positions r k, nor time t, so T = T(v 1, v 2, ...). V , the potential energy of the system, reflects the energy of interaction between the particles, i.e. how much energy any one particle has due to all the others, together with any ...

  9. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The formula for the acceleration A P can now be obtained as: = ˙ + + (), or = / + / +, where α is the angular acceleration vector obtained from the derivative of the angular velocity vector; / =, is the relative position vector (the position of P relative to the origin O of the moving frame M); and = ¨ is the acceleration of the origin of ...