enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.

  3. Category:Markov processes - Wikipedia

    en.wikipedia.org/wiki/Category:Markov_processes

    Markov chain approximation method; Markov chain central limit theorem; Markov chain mixing time; Markov chain tree theorem; Markov Chains and Mixing Times; Markov chains on a measurable state space; Markov decision process; Markov information source; Markov kernel; Markov chain; Markov property; Markov renewal process; Markov reward model ...

  4. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Usually the term "Markov chain" is reserved for a process with a discrete set of times, that is, a discrete-time Markov chain (DTMC), [11] but a few authors use the term "Markov process" to refer to a continuous-time Markov chain (CTMC) without explicit mention.

  5. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

  6. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.

  7. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    A process with this property is said to be Markov or Markovian and known as a Markov process. Two famous classes of Markov process are the Markov chain and Brownian motion . Note that there is a subtle, often overlooked and very important point that is often missed in the plain English statement of the definition: the statespace of the process ...

  8. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is

  9. Partially observable Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Partially_observable...

    A partially observable Markov decision process (POMDP) is a generalization of a Markov decision process (MDP). A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state.