Search results
Results from the WOW.Com Content Network
In calculus, the product rule (or Leibniz rule [1] ... The proof is by mathematical induction on the exponent n. If n = 0 then x n is constant and nx n − 1 = 0. The ...
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
Solving for , = = = = = Thus, the power rule applies for rational exponents of the form /, where is a nonzero natural number. This can be generalized to rational exponents of the form p / q {\displaystyle p/q} by applying the power rule for integer exponents using the chain rule, as shown in the next step.
The "product limit" characterization of the exponential function was discovered by Leonhard Euler. [2] ... By inductively applying the multiplication rule, ...
It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be readily derived by integrating the product rule of differentiation. If u = u(x) and du = u ′ (x) dx, while v = v(x) and dv = v ′ (x) dx, then integration by parts states that:
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.
the matrix exponential reduces to a plain product of the exponentials of the two respective pieces. This is a formula often used in physics, as it amounts to the analog of Euler's formula for Pauli spin matrices, that is rotations of the doublet representation of the group SU(2).
Use divide and conquer to compute the product of the primes whose exponents are odd; Divide all of the exponents by two (rounding down to an integer), recursively compute the product of the prime powers with these smaller exponents, and square the result; Multiply together the results of the two previous steps