Ads
related to: modular arithmetic identities examples worksheet 7th grade printable word searchteacherspayteachers.com has been visited by 100K+ users in the past month
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Packets
Search results
Results from the WOW.Com Content Network
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
For example, take (/). Then φ ( 20 ) = 8 {\displaystyle \varphi (20)=8} means that the order of the group is 8 (i.e., there are 8 numbers less than 20 and coprime to it); λ ( 20 ) = 4 {\displaystyle \lambda (20)=4} means the order of each element divides 4, that is, the fourth power of any number coprime to 20 is congruent to 1 (mod 20).
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [1]In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.
See modular arithmetic for notation and terminology. The roots of unity modulo n are exactly the integers that are coprime with n. In fact, these integers are roots of unity modulo n by Euler's theorem, and the other integers cannot be roots of unity modulo n, because they are zero divisors modulo n.
As another example, consider the product 7 ⋅ 15 mod 17 but with R = 10. Using the extended Euclidean algorithm, compute −5 ⋅ 10 + 3 ⋅ 17 = 1, so N′ will be −3 mod 10 = 7. The Montgomery forms of 7 and 15 are 70 mod 17 = 2 and 150 mod 17 = 14, respectively.
Ads
related to: modular arithmetic identities examples worksheet 7th grade printable word searchteacherspayteachers.com has been visited by 100K+ users in the past month