Search results
Results from the WOW.Com Content Network
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
ASTM A500 defines four grades of carbon steel based primarily on material strength. [1] This is a standard set by the standards organization ASTM International , a voluntary standards development organization that sets technical standards for materials, products, systems, and services.
The next set of 3 digits gives the steel's minimum yield strength. So S355 has a minimum yield strength of 355 MPa for the smallest thickness range covered by the relevant standard – i.e. EN10025. [2] Below is a table indicating the most common application codes.
The tensile yield strength of A514 alloys is specified as at least 100 ksi (689 MPa) for thicknesses up to 2.5 inches (63.5 mm) thick plate, and at least 110 ksi (758 MPa) ultimate tensile strength, with a specified ultimate range of 110–130 ksi (758–896 MPa). Plates from 2.5 to 6.0 inches (63.5 to 152.4 mm) thick have specified strength of ...
Specified Minimum Yield Strength (SMYS) means the specified minimum yield strength for steel pipe manufactured in accordance with a listed specification 1. This is a common term used in the oil and gas industry for steel pipe used under the jurisdiction of the United States Department of Transportation .
It also corresponds to the “strength” (ultimate tensile stress), at least for metals that do neck (which covers the majority of “engineering” metals). On the other hand, the peak in a nominal stress-strain curve is commonly a fairly flat plateau, rather than a sharp maximum, so accurate assessment of the strain at the onset of necking ...
In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [1] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow, an English mathematician. [3] = Cylinder, where