Search results
Results from the WOW.Com Content Network
Neuronal precursor cells proliferate in the ventricular zone of the developing neocortex, where the principal neural stem cell is the radial glial cell. The first postmitotic cells must leave the stem cell niche and migrate outward to form the preplate, which is destined to become Cajal–Retzius cells and subplate neurons.
Both cells later produce one or two neural cells (N). A progenitor cell is a biological cell that can differentiate into a specific cell type. Stem cells and progenitor cells have this ability in common. However, stem cells are less specified than progenitor cells. Progenitor cells can only differentiate into their "target" cell type. [1]
In rodents for example, neurons in the central nervous system arise from three types of neural stem and progenitor cells: neuroepithelial cells, radial glial cells and basal progenitors, which go through three main divisions: symmetric proliferative division; asymmetric neurogenic division; and symmetric neurogenic division.
Proneural genes in neurogenesis and gliogenesis pathway - Neural stem cells have the potential to generate all neural cell types, such as neuron (neuronal progenitor), astrocytes and oligodendrocytes (glial progenitors). The proneural gene expression is induced by neurogenic signals and results in the activation of neuronal-differentiation ...
Radial glia are now recognized as key progenitor cells in the developing nervous system. During the late stages of neurogenesis, radial glial cells divide asymmetrically in the ventricular zone , generating a new radial glial cell, as well as a postmitotic neuron or an intermediate progenitor (IPC) daughter cell.
The development of the nervous system in humans, or neural development, or neurodevelopment involves the studies of embryology, developmental biology, and neuroscience.These describe the cellular and molecular mechanisms by which the complex nervous system forms in humans, develops during prenatal development, and continues to develop postnatally.
The study involves looking at a particular part of the nervous system from a molecular and cellular level and connecting it to a physiological and anatomical point of view. The field also explores the communications and interactions within and between each specialized section of the nervous system. Morphology is distinct from morphogenesis ...
This neural groove sets the boundary between the right and left sides of the embryo. The neural folds pinch in towards the midline of the embryo and fuse together to form the neural tube. [1] In secondary neurulation, the cells of the neural plate form a cord-like structure that migrates inside the embryo and hollows to form the tube.