Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the negative hypergeometric distribution describes probabilities for when sampling from a finite population without replacement in which each sample can be classified into two mutually exclusive categories like Pass/Fail or Employed/Unemployed. As random selections are made from the population, each ...
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
The Dirac delta function, although not strictly a probability distribution, is a limiting form of many continuous probability functions. It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it ...
The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the resulting distribution is a hypergeometric distribution, not a binomial one.
In statistics, the hypergeometric distribution is the discrete probability distribution generated by picking colored balls at random from an urn without replacement.. Various generalizations to this distribution exist for cases where the picking of colored balls is biased so that balls of one color are more likely to be picked than balls of another color.
Lottery mathematics is used to calculate probabilities of winning or losing a lottery game. It is based primarily on combinatorics, particularly the twelvefold way and combinations without replacement. It can also be used to analyze coincidences that happen in lottery drawings, such as repeated numbers appearing across different draws. [1
The following chart enumerates the (absolute) frequency of each hand, given all combinations of five cards randomly drawn from a full deck of 52 without replacement. Wild cards are not considered. In this chart: Distinct hands is the number of different ways to draw the hand, not counting different suits. In particular, a set of hands that all ...
This table [1] represents the different ways that two to eight particular cards may be distributed, or may lie or split, between two unknown 13-card hands (before the bidding and play, or a priori). The table also shows the number of combinations of particular cards that match any numerical split and the probabilities for each combination.