Search results
Results from the WOW.Com Content Network
Extension per unit length unitless 1: Stress: σ: Force per unit oriented surface area Pa L −1 M T −2: order 2 tensor Surface tension: γ: Energy change per unit change in surface area N/m or J/m 2: M T −2: Thermal conductance κ (or) λ: Measure for the ease with which an object conducts heat W/K L 2 M T −3 Θ −1: extensive Thermal ...
The capillary length will vary for different liquids and different conditions. Here is a picture of a water droplet on a lotus leaf. If the temperature is 20 o then = 2.71mm . The capillary length or capillary constant is a length scaling factor that relates gravity and surface tension.
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction).
digital imaging (smallest addressable unit) Power factor: pf = electrical (real power to apparent power) Power number: N p = fluid mechanics, power consumption by rotary agitators; resistance force versus inertia force) Prater number: β
The term tractive effort is often qualified as starting tractive effort, continuous tractive effort and maximum tractive effort.These terms apply to different operating conditions, but are related by common mechanical factors: input torque to the driving wheels, the wheel diameter, coefficient of friction (μ) between the driving wheels and supporting surface, and the weight applied to the ...
This maximum force is known as traction. The force of friction is always exerted in a direction that opposes movement (for kinetic friction) or potential movement (for static friction) between the two surfaces. For example, a curling stone sliding along the ice experiences a kinetic force slowing it down. For an example of potential movement ...
Surface tension has the dimension of force per unit length, or of energy per unit area. [3] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to solids.