enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a , the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ 1 (mod n ) .

  4. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  5. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    The corresponding addition and multiplication of equivalence classes is known as modular arithmetic. From the point of view of abstract algebra, congruence modulo n {\displaystyle n} is a congruence relation on the ring of integers, and arithmetic modulo n {\displaystyle n} occurs on the corresponding quotient ring .

  6. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  7. Category:Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Category:Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for certain equivalence classes of integers, called congruence classes. Sometimes it is suggestively called 'clock arithmetic', where numbers 'wrap around' after they reach a certain value (the modulus). For example, when the modulus is 12, then any two numbers that leave the same ...

  8. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The output of the integer operation determines a residue class, and the output of the modular operation is determined by computing the residue class's representative. For example, if N = 17, then the sum of the residue classes 7 and 15 is computed by finding the integer sum 7 + 15 = 22, then determining 22 mod 17, the integer between 0 and 16 ...

  9. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...