Search results
Results from the WOW.Com Content Network
Bio-inspired computing, short for biologically inspired computing, is a field of study which seeks to solve computer science problems using models of biology.It relates to connectionism, social behavior, and emergence.
By convention, the coding strand is the strand used when displaying a DNA sequence. It is presented in the 5' to 3' direction. Wherever a gene exists on a DNA molecule, one strand is the coding strand (or sense strand), and the other is the noncoding strand (also called the antisense strand, [3] anticoding strand, template strand or transcribed ...
Polyacrylamide gel electrophoresis (PAGE) is a technique widely used in biochemistry, forensic chemistry, genetics, molecular biology and biotechnology to separate biological macromolecules, usually proteins or nucleic acids, according to their electrophoretic mobility. Electrophoretic mobility is a function of the length, conformation, and ...
The non-template (sense) strand of DNA is called the coding strand, because its sequence is the same as the newly created RNA transcript (except for the substitution of uracil for thymine). This is the strand that is used by convention when presenting a DNA sequence.
[6] The pre-mRNA molecule synthesized is complementary to the template DNA strand and shares the same nucleotide sequence as the coding DNA strand. However, there is one crucial difference in the nucleotide composition of DNA and mRNA molecules. DNA is composed of the bases: guanine, cytosine, adenine and thymine (G, C, A and T).
A single-strand conformation polymorphism gel where DNA was stained with silver staining. Single-strand conformation polymorphism (SSCP), or single-strand chain polymorphism, is defined as a conformational difference of single-stranded nucleotide sequences of identical length as induced by differences in the sequences under certain experimental conditions.
The polymerase is held onto the DNA strand by PCNA (Proliferating Cell Nuclear Antigen). PCNA forms typical patterns in the nucleus of the cell through which the current cell cycle can be determined. The polymerase synthesizes the missing part of the broken strand. When the broken strand is rebuilt, both strands need to uncouple again.
The original strand is washed away, leaving only the reverse strand. At the top of the reverse strand there is an adapter sequence. The DNA strand bends and attaches to the oligo that is complementary to the top adapter sequence. Polymerases attach to the reverse strand, and its complementary strand (which is identical to the original) is made.