enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).

  3. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    When the model has been estimated over all available data with none held back, the MSPE of the model over the entire population of mostly unobserved data can be estimated as follows.

  4. Forecast skill - Wikipedia

    en.wikipedia.org/wiki/Forecast_skill

    Forecasting skill for single-value forecasts (i.e., time series of a scalar quantity) is commonly represented in terms of metrics such as correlation, root mean squared error, mean absolute error, relative mean absolute error, bias, and the Brier score, among others.

  5. Scoring rule - Wikipedia

    en.wikipedia.org/wiki/Scoring_rule

    The quadratic scoring rule is a strictly proper scoring rule (,) = = =where is the probability assigned to the correct answer and is the number of classes.. The Brier score, originally proposed by Glenn W. Brier in 1950, [4] can be obtained by an affine transform from the quadratic scoring rule.

  6. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    Normalizing the RMSD facilitates the comparison between datasets or models with different scales. Though there is no consistent means of normalization in the literature, common choices are the mean or the range (defined as the maximum value minus the minimum value) of the measured data: [4]

  7. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    It is remarkable that the sum of squares of the residuals and the sample mean can be shown to be independent of each other, using, e.g. Basu's theorem.That fact, and the normal and chi-squared distributions given above form the basis of calculations involving the t-statistic:

  8. Bartlett's test - Wikipedia

    en.wikipedia.org/wiki/Bartlett's_test

    The test procedure due to M.S.E (Mean Square Error/Estimator) Bartlett test is represented here. This test procedure is based on the statistic whose sampling distribution is approximately a Chi-Square distribution with ( k − 1) degrees of freedom, where k is the number of random samples, which may vary in size and are each drawn from ...

  9. Stein's unbiased risk estimate - Wikipedia

    en.wikipedia.org/wiki/Stein's_unbiased_risk_estimate

    A standard application of SURE is to choose a parametric form for an estimator, and then optimize the values of the parameters to minimize the risk estimate. This technique has been applied in several settings. For example, a variant of the James–Stein estimator can be derived by finding the optimal shrinkage estimator. [2]