enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Encoder self-attention, block diagram.png - Wikipedia

    en.wikipedia.org/wiki/File:Encoder_self...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  3. File:Encoder diagram.svg - Wikipedia

    en.wikipedia.org/wiki/File:Encoder_diagram.svg

    This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.: You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work

  4. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).

  5. Code-excited linear prediction - Wikipedia

    en.wikipedia.org/wiki/Code-excited_linear_prediction

    Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e.g., FS-1015).

  6. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules:

  7. Byte pair encoding - Wikipedia

    en.wikipedia.org/wiki/Byte_pair_encoding

    Byte pair encoding [1] [2] (also known as BPE, or digram coding) [3] is an algorithm, first described in 1994 by Philip Gage, for encoding strings of text into smaller strings by creating and using a translation table. [4] A slightly-modified version of the algorithm is used in large language model tokenizers.

  8. File:Encoder Example.svg - Wikipedia

    en.wikipedia.org/wiki/File:Encoder_Example.svg

    This file was suggested for transfer by a bot . Please verify that this file is suitable for Commons before transferring it. This media file is either in the public domain or published under a free license , and contains no inbound file links .

  9. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    One encoder-decoder block A Transformer is composed of stacked encoder layers and decoder layers. Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding ...