Search results
Results from the WOW.Com Content Network
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species;
Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".
Latimer diagrams can be used in the construction of Frost diagrams, as a concise summary of the standard electrode potentials relative to the element.Since Δ r G o = -nFE o, the electrode potential is a representation of the Gibbs energy change for the given reduction.
In electrochemistry, electrode potential is the voltage of a galvanic cell built from a standard reference electrode and another electrode to be characterized. [1] By convention, the reference electrode is the standard hydrogen electrode (SHE). It is defined to have a potential of zero volts. It may also be defined as the potential difference ...
The formal potential is thus the reversible potential of an electrode at equilibrium immersed in a solution where reactants and products are at unit concentration. [4] If any small incremental change of potential causes a change in the direction of the reaction, i.e. from reduction to oxidation or vice versa , the system is close to equilibrium ...
During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".
The difference can be measured as a difference in voltage potential: the less noble metal is the one with a lower (that is, more negative) electrode potential than the nobler one, and will function as the anode (electron or anion attractor) within the electrolyte device functioning as described above (a galvanic cell).
Absolute electrode potential, in electrochemistry, according to an IUPAC definition, [1] is the electrode potential of a metal measured with respect to a universal reference system (without any additional metal–solution interface).