Search results
Results from the WOW.Com Content Network
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species;
Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".
In electrochemistry, electrode potential is the voltage of a galvanic cell built from a standard reference electrode and another electrode to be characterized. [1] By convention, the reference electrode is the standard hydrogen electrode (SHE). It is defined to have a potential of zero volts. It may also be defined as the potential difference ...
For example, for oxygen, the species would be in the order O 2 (0), H 2 O 2 (–1), H 2 O (-2): The arrow between O 2 and H 2 O 2 has a value +0.68 V over it, it indicates that the standard electrode potential for the reaction: O 2 (g) + 2 H + + 2 e − ⇄ H 2 O 2 (aq) is 0.68 volts.
During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".
Absolute electrode potential, in electrochemistry, according to an IUPAC definition, [1] is the electrode potential of a metal measured with respect to a universal reference system (without any additional metal–solution interface).
From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Standard electrode potential (data page)
The concentration of free electrons is effectively zero as the electrons are transferred directly from the reductant to the oxidant. The standard electrode potential, E 0 for the each half-reaction is related to the standard free energy change by [30]