Search results
Results from the WOW.Com Content Network
A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.
A binary relation on a set is formally defined as a set of ordered pairs (,) of elements of , and (,) is often abbreviated as .. A relation is reflexive if holds for every element ; it is transitive if imply for all ,,; it is antisymmetric if imply = for all ,; and it is a connex relation if holds for all ,.
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric [1]) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition [ 2 ] : p. 38
Orders are special binary relations. Suppose that P is a set and that ≤ is a relation on P ('relation on a set' is taken to mean 'relation amongst its inhabitants', i.e. ≤ is a subset of the cartesian product P x P). Then ≤ is a partial order if it is reflexive, antisymmetric, and transitive, that is, if for all a, b and c in P, we have that:
Symmetric and antisymmetric relations By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b , then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").
Antisymmetric for all x, y ∈ X, if xRy and yRx then x = y. For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [8] Asymmetric for all x, y ∈ X, if xRy then not yRx. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. [9]
As a result, once a proof is given for the particular case, it is trivial to adapt it to prove the conclusion in all other cases. In many scenarios, the use of "without loss of generality" is made possible by the presence of symmetry. [2]