enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ekman transport - Wikipedia

    en.wikipedia.org/wiki/Ekman_transport

    Ekman transport is the net motion of fluid as the result of a balance between Coriolis and turbulent drag forces. In the picture above, the wind blowing North in the northern hemisphere creates a surface stress and a resulting Ekman spiral is found below it in the water column.

  3. Ekman layer - Wikipedia

    en.wikipedia.org/wiki/Ekman_layer

    In the atmosphere, the Ekman solution generally overstates the magnitude of the horizontal wind field because it does not account for the velocity shear in the surface layer. Splitting the planetary boundary layer into the surface layer and the Ekman layer generally yields more accurate results.

  4. Ekman spiral - Wikipedia

    en.wikipedia.org/wiki/Ekman_spiral

    The solution for the flow forming the bottom Ekman spiral was a result of the shear stress exerted on the flow by the bottom. Logically, wherever shear stress can be exerted on a flow, Ekman spirals will form. This is the case at the air–water interface, because of wind.

  5. Upwelling - Wikipedia

    en.wikipedia.org/wiki/Upwelling

    Examples include upwellings around the Galapagos Islands and the Seychelles Islands, which have major pelagic fisheries. [4] Upwelling could occur anywhere as long as there is an adequate shear in the horizontal wind field. For example when a tropical cyclone transits an area, usually when moving at speeds of less than 5 mph (8 km/h). The ...

  6. Wind stress - Wikipedia

    en.wikipedia.org/wiki/Wind_stress

    Equatorial upwelling occurs due to the trade winds blowing towards the west in both the Northern Hemisphere and the Southern Hemisphere. However, the Ekman transport that is associated with these trade winds is directed 90° to the right of the winds in the Northern Hemisphere and 90° to the left of the winds in the Southern Hemisphere.

  7. Wind generated current - Wikipedia

    en.wikipedia.org/wiki/Wind_generated_current

    A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, [1] but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. [2]

  8. Boundary current - Wikipedia

    en.wikipedia.org/wiki/Boundary_current

    They carry warm water from the tropics poleward. Examples include the Gulf Stream, the Agulhas Current, and the Kuroshio Current. Low-latitude western boundary currents are similar to sub-tropical western boundary currents but carry cool water from the subtropics equatorward. Examples include the Mindanao Current and the North Brazil Current.

  9. Walker circulation - Wikipedia

    en.wikipedia.org/wiki/Walker_circulation

    This also creates ocean upwelling off the coasts of Peru and Ecuador and brings nutrient-rich cold water to the surface, increasing fishing stocks. [10] The western side of the equatorial Pacific is characterized by warm, wet, low-pressure weather as the collected moisture is dumped in the form of typhoons and thunderstorms. The ocean is some ...