Search results
Results from the WOW.Com Content Network
Vaporization (or vapo(u)risation) of an element or compound is a phase transition from the liquid phase to vapor. [1] There are two types of vaporization: evaporation and boiling. Evaporation is a surface phenomenon, whereas boiling is a bulk phenomenon (a phenomenon in which the whole object or substance is involved in the process).
Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. [1] A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. [ 2 ]
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
Boiling is the method of cooking food in boiling water or other water-based liquids such as stock or milk. [13] Simmering is gentle boiling, while in poaching the cooking liquid moves but scarcely bubbles. [14] The boiling point of water is typically considered to be 100 °C (212 °F; 373 K), especially at sea level.
Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Water vapor is transparent, like most constituents of the atmosphere. [1] Under typical atmospheric conditions, water vapor is continuously generated by evaporation and removed by condensation.
The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and cause the liquid to form vapor bubbles.
In thermodynamics, Trouton's rule states that the (molar) entropy of vaporization is almost the same value, about 85–88 J/(K·mol), for various kinds of liquids at their boiling points. [1] The entropy of vaporization is defined as the ratio between the enthalpy of vaporization and the boiling temperature.
Table 363, Evaporation of Metals The equations are described as reproducing the observed pressures to a satisfactory degree of approximation. From these sources: a - K.K. Kelley, Bur. Mines Bull. 383, (1935). b - Ditchburn, R. W.; Gilmour, J. C. (1941-10-01). "The Vapor Pressures of Monatomic Vapors". Reviews of Modern Physics. 13 (4). American ...