enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    This solution of the vibrating drum problem is, at any point in time, an eigenfunction of the Laplace operator on a disk.. In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue.

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Thus, if one wants to underline this aspect, one speaks of nonlinear eigenvalue problems. Such equations are usually solved by an iteration procedure, called in this case self-consistent field method. In quantum chemistry, one often represents the Hartree–Fock equation in a non-orthogonal basis set.

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  6. Dirichlet eigenvalue - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_eigenvalue

    This operator is invertible, and its inverse is compact and self-adjoint so that the usual spectral theorem can be applied to obtain the eigenspaces of Δ and the reciprocals 1/λ of its eigenvalues. One of the primary tools in the study of the Dirichlet eigenvalues is the max-min principle: the first eigenvalue λ 1 minimizes the Dirichlet ...

  7. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    The equation is for an ellipse, since both eigenvalues are positive. (Otherwise, if one were positive and the other negative, it would be a hyperbola.) The principal axes are the lines spanned by the eigenvectors. The minimum and maximum distances to the origin can be read off the equation in diagonal form.

  8. Today's Wordle Hint, Answer for #1273 on Friday, December 13 ...

    www.aol.com/todays-wordle-hint-answer-1273...

    If you’re stuck on today’s Wordle answer, we’re here to help—but beware of spoilers for Wordle 1273 ahead. Let's start with a few hints.

  9. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    Commuting matrices preserve each other's eigenspaces. [2] As a consequence, commuting matrices over an algebraically closed field are simultaneously triangularizable; that is, there are bases over which they are both upper triangular.