Search results
Results from the WOW.Com Content Network
In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code, or Caesar shift, is one of the simplest and most widely known encryption techniques. It is a type of substitution cipher in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet .
ROT13 is a special case of the Caesar cipher which was developed in ancient Rome, used by Julius Caesar in the 1st century BC. [1] An early entry on the Timeline of cryptography . ROT13 can be referred by "Rotate13", "rotate by 13 places", hyphenated "ROT-13" or sometimes by its autonym "EBG13".
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The Caesar Cipher is one of the earliest known cryptographic systems. Julius Caesar used a cipher that shifts the letters in the alphabet in place by three and wrapping the remaining letters to the front to write to Marcus Tullius Cicero in approximately 50 BC. [citation needed] Historical pen and paper ciphers used in the past are sometimes ...
A well-known example of a substitution cipher is the Caesar cipher. To encrypt a message with the Caesar cipher, each letter of message is replaced by the letter three positions later in the alphabet. Hence, A is replaced by D, B by E, C by F, etc. Finally, X, Y and Z are replaced by A, B and C respectively.
All polyalphabetic ciphers based on the Caesar cipher can be described in terms of the tabula recta. The tabula recta uses a letter square with the 26 letters of the alphabet followed by 26 rows of additional letters, each shifted once to the left from the one above it. This, in essence, creates 26 different Caesar ciphers. [1]
This page was last edited on 22 October 2024, at 17:12 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
A message encoded with this type of encryption could be decoded with a fixed number on the Caesar cipher. [3] Around 800 AD, Arab mathematician Al-Kindi developed the technique of frequency analysis – which was an attempt to crack ciphers systematically, including the Caesar cipher. [2]