Search results
Results from the WOW.Com Content Network
The bar is a metric unit of pressure defined as 100,000 Pa (100 kPa), though not part of the International System of Units (SI). A pressure of 1 bar is slightly less than the current average atmospheric pressure on Earth at sea level (approximately 1.013 bar).
A cable in this usage cable is a thick rope or by transference a chain cable. [1] The OED gives quotations from c. 1400 onwards. A cable's length (often "cable length" or just "cable") is simply the standard length in which cables came, which by 1555 had settled to around 100 fathoms (600 ft; 180 m) or 1 ⁄ 10 nautical mile (0.19 km; 0.12 mi). [1]
Processes transferring energy from a non-thermal carrier to heat as a carrier do produce entropy (Example: mechanical/electrical friction, established by Count Rumford). Either the produced entropy or heat are measured (calorimetry) or the transferred energy of the non-thermal carrier may be measured.
The fermi is a unit of distance used in nuclear physics equal to 1 fm. [9] The angstrom (symbol Å) is a unit of distance used in chemistry and atomic physics equal to 100 pm. The micron (μ) is a unit of distance equal to one micrometre (1 μm). The basic module (M) is a unit of distance equal to one hundred millimetres (100 mm).
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
The electrical length of an antenna, like a transmission line, is its length in wavelengths of the current on the antenna at the operating frequency. [1] [12] [13] [4]: p.91–104 An antenna's resonant frequency, radiation pattern, and driving point impedance depend not on its physical length but on its electrical length. [14]
Thermal conduction (power) is the heat per unit time transferred some distance ℓ between the two temperatures. κ is the thermal conductivity of the material; A is the cross-sectional area of the object; ΔT is the difference in temperature from one side to the other. ℓ is the length of the path the heat has to be transferred.
The numbers of wire were in common use earlier than 1735 when the measurements were officially defined. [1] It is believed that they originally were based on the series of drawn wires, No. 1 being the original rod, and succeeding numbers corresponding with each draw, so that No. 10, for example, would have passed ten times through the draw plate.