enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  3. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The collection of tensors on a vector space and its dual forms a tensor algebra, which allows products of arbitrary tensors. Simple applications of tensors of order 2 , which can be represented as a square matrix, can be solved by clever arrangement of transposed vectors and by applying the rules of matrix multiplication, but the tensor product ...

  4. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra. The outer product contrasts with: The dot product (a special case of " inner product "), which takes a pair of coordinate vectors as input and produces a scalar

  5. Tor functor - Wikipedia

    en.wikipedia.org/wiki/Tor_functor

    In mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring.Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to construct invariants of algebraic structures.

  6. Tensor product of representations - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of...

    One can extend the notion of tensor products to any finite number of representations. If V is a linear representation of a group G, then with the above linear action, the tensor algebra is an algebraic representation of G; i.e., each element of G acts as an algebra automorphism.

  7. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    [a] [1] [2] [3] It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), tensor calculus or tensor analysis developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. [4]

  8. Associative algebra - Wikipedia

    en.wikipedia.org/wiki/Associative_algebra

    The tensor algebra of an R-module is naturally an associative R-algebra. The same is true for quotients such as the exterior and symmetric algebras. Categorically speaking, the functor that maps an R-module to its tensor algebra is left adjoint to the functor that sends an R-algebra to its underlying R-module (forgetting the multiplicative ...

  9. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    The tensor product, or simply , of two vector spaces and is one of the central notions of multilinear algebra which deals with extending notions such as linear maps to several variables. A map g : V × W → X {\displaystyle g:V\times W\to X} from the Cartesian product V × W {\displaystyle V\times W} is called bilinear if g {\displaystyle g ...