Search results
Results from the WOW.Com Content Network
Alkenes having four or more carbon atoms can form diverse structural isomers. Most alkenes are also isomers of cycloalkanes. Acyclic alkene structural isomers with only one double bond follow: [6] C 2 H 4: ethylene only; C 3 H 6: propylene only; C 4 H 8: 3 isomers: 1-butene, 2-butene, and isobutylene
There are two types of alpha-olefins, branched and linear (or normal). The chemical properties of branched alpha-olefins with a branch at either the second (vinylidene) or the third carbon number are significantly different from the properties of linear alpha-olefins and those with branches on the fourth carbon number and further from the start of the chain.
In one study, [3] the strained alkene 4.4 was synthesized with the highest pyramidalizion angles yet, 33.5° and 34.3°. This compound is the double Diels–Alder adduct of the diiodo cyclophane 4.1 and anthracene 4.3 by reaction in presence of potassium tert-butoxide in refluxing dibutyl ether through a di aryne intermediate 4.2 .
Straight-chain terminal alkenes, also called linear alpha olefins (LAO) or normal alpha olefins (NAO), are alkenes (olefins) having a chemical formula C n H 2n, distinguished from other alkenes with a similar molecular formula by being terminal alkenes, in which the double bond occurs at the alpha (α-, 1-or primary) position, and by having a linear (unbranched) hydrocarbon chain.
In organic chemistry, a rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. [1] Often a substituent moves from one atom to another atom in the same molecule, hence these reactions are usually intramolecular. In the example below ...
Hydroformylation of an alkene (R 1 to R 3 organyl groups (i. e. alkyl-or aryl group) or hydrogen). In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes (R−CH=O) from alkenes (R 2 C=CR 2).
In organic chemistry, the ene reaction (also known as the Alder-ene reaction by its discoverer Kurt Alder in 1943) is a chemical reaction between an alkene with an allylic hydrogen (the ene) and a compound containing a multiple bond (the enophile), in order to form a new σ-bond with migration of the ene double bond and 1,5 hydrogen shift.
Dimethyldioxirane (DMDO) is the organic compound with the formula (CH 3) 2 CO 2. [1] It is the dioxirane derived from acetone and can be viewed as the monomer of acetone peroxide.It is a powerful selective oxidizing agent that finds some use in organic synthesis.