Search results
Results from the WOW.Com Content Network
In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl.
A smooth quadric over a field k is a projective homogeneous variety for the orthogonal group (and for the special orthogonal group), viewed as linear algebraic groups over k. Like any projective homogeneous variety for a split reductive group, a split quadric X has an algebraic cell decomposition, known as the Bruhat decomposition. (In ...
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]
Download QR code; Print/export Download as PDF; ... -coordinate is found by calculating the magnitude of the orthogonal projection of the stress state onto the ...
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
Download QR code; Print/export Download as PDF; Printable version; In other projects ... In algebraic geometry, the projection formula states the following: [1] [2]
A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...