Search results
Results from the WOW.Com Content Network
In computing, the process identifier (a.k.a. process ID or PID) is a number used by most operating system kernels—such as those of Unix, macOS and Windows—to uniquely identify an active process. This number may be used as a parameter in various function calls, allowing processes to be manipulated, such as adjusting the process's priority or ...
Advances in automated PID loop tuning software also deliver algorithms for tuning PID Loops in a dynamic or non-steady state (NSS) scenario. The software models the dynamics of a process, through a disturbance, and calculate PID control parameters in response. [30]
The Ziegler–Nichols tuning (represented by the 'Classic PID' equations in the table above) creates a "quarter wave decay". This is an acceptable result for some purposes, but not optimal for all applications. This tuning rule is meant to give PID loops best disturbance rejection. [2]
A Piping and Instrumentation Diagram (P&ID or PID) is a detailed diagram in the process industry which shows process equipment together with the instrumentation and control devices. It is also called as mechanical flow diagram (MFD).
OBD-II PIDs (On-board diagnostics Parameter IDs) are codes used to request data from a vehicle, used as a diagnostic tool.. SAE standard J1979 defines many OBD-II PIDs. All on-road vehicles and trucks sold in North America are required to support a subset of these codes, primarily for state mandated emissions inspections.
PID controller (proportional-integral-derivative controller), a control concept used in automation; Piping and instrumentation diagram (P&ID), a diagram in the process industry which shows the piping of the process flow etc. Principal ideal domain, an algebraic structure; Process identifier, a number used by many operating systems to identify a ...
In the context of PID controller, the setpoint represents the reference or goal for the controlled process variable. It serves as the benchmark against which the actual process variable (PV) is continuously compared.
In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely generated modules over a PID, and in particular for deducing the structure of a quotient of a free module. It is named after the Irish mathematician Henry John Stephen Smith.