enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    A time derivative is a derivative of a function with respect to time, usually interpreted as the rate of change of the value of the function. [1] The variable denoting time is usually written as t {\displaystyle t} .

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Further time derivatives have also been named, as snap or jounce (fourth derivative), crackle (fifth derivative), and pop (sixth derivative). [12] [13] The seventh derivative is known as "Bang," as it is a logical continuation to the cycle. The eighth derivative has been referred to as "Boom," and the 9th is known as "Crash."

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances. Derivatives can be generalized ...

  6. Upper-convected time derivative - Wikipedia

    en.wikipedia.org/.../Upper-convected_time_derivative

    In continuum mechanics, including fluid dynamics, an upper-convected time derivative or Oldroyd derivative, named after James G. Oldroyd, is the rate of change of some tensor property of a small parcel of fluid that is written in the coordinate system rotating and stretching with the fluid. The operator is specified by the following formula:

  7. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  8. Material derivative - Wikipedia

    en.wikipedia.org/wiki/Material_derivative

    The material derivative is defined for any tensor field y that is macroscopic, with the sense that it depends only on position and time coordinates, y = y(x, t): +, where ∇y is the covariant derivative of the tensor, and u(x, t) is the flow velocity.

  9. Ehrenfest theorem - Wikipedia

    en.wikipedia.org/wiki/Ehrenfest_theorem

    The Ehrenfest theorem, named after Austrian theoretical physicist Paul Ehrenfest, relates the time derivative of the expectation values of the position and momentum operators x and p to the expectation value of the force = ′ on a massive particle moving in a scalar potential (), [1]