Search results
Results from the WOW.Com Content Network
Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).
Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.
The normal Huffman coding algorithm assigns a variable length code to every symbol in the alphabet. More frequently used symbols will be assigned a shorter code. For example, suppose we have the following non-canonical codebook: A = 11 B = 0 C = 101 D = 100 Here the letter A has been assigned 2 bits, B has 1 bit, and C and D both have 3 bits.
A greedy algorithm is used to construct a Huffman tree during Huffman coding where it finds an optimal solution. In decision tree learning, greedy algorithms are commonly used, however they are not guaranteed to find the optimal solution. One popular such algorithm is the ID3 algorithm for decision tree construction.
If α is given its maximum allowed value, the worst-case height of a weight-balanced tree is the same as that of a red–black tree at . The number of balancing operations required in a sequence of n insertions and deletions is linear in n , i.e., balancing takes a constant amount of overhead in an amortized sense.
Modified Huffman coding is used in fax machines to encode black-on-white images . It combines the variable-length codes of Huffman coding with the coding of repetitive data in run-length encoding . The basic Huffman coding provides a way to compress files with much repeating data, like a file containing text, where the alphabet letters are the ...
A few years later, David A. Huffman (1952) [13] gave a different algorithm that always produces an optimal tree for any given symbol probabilities. While Fano's Shannon–Fano tree is created by dividing from the root to the leaves, the Huffman algorithm works in the opposite direction, merging from the leaves to the root.
As with ideal observer decoding, a convention must be agreed to for non-unique decoding. The maximum likelihood decoding problem can also be modeled as an integer programming problem. [1] The maximum likelihood decoding algorithm is an instance of the "marginalize a product function" problem which is solved by applying the generalized ...