Search results
Results from the WOW.Com Content Network
The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .
The memorylessness property asserts that the number of previously failed trials has no effect on the number of future trials needed for a success. Geometric random variables can also be defined as taking values in N 0 {\displaystyle \mathbb {N} _{0}} , which describes the number of failed trials before the first success in a sequence of ...
It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. [2] In addition to being used for the analysis of Poisson point processes it is found in various other contexts. [3] The exponential distribution is not the same as the class of exponential families of distributions.
The survival function is one of several ways to describe and display survival data. Another useful way to display data is a graph showing the distribution of survival times of subjects. Olkin, [5] page 426, gives the following example of survival data. The number of hours between successive failures of an air-conditioning (AC) system were recorded.
The Lindy effect (also known as Lindy's law [1]) is a theorized phenomenon by which the future life expectancy of some non-perishable things, like a technology or an idea, is proportional to their current age. Thus, the Lindy effect proposes the longer a period something has survived to exist or be used in the present, the longer its remaining ...
For example, if the renewal process is modelling the numbers of breakdown of different machines, then the holding time represents the time between one machine breaking down before another one does. The Poisson process is the unique renewal process with the Markov property , [ 1 ] as the exponential distribution is the unique continuous random ...
We will assume for the moment that all state spaces of the systems considered, classical or quantum, are finite-dimensional. The memoryless in the section title carries the same meaning as in classical information theory: the output of a channel at a given time depends only upon the corresponding input and not any previous ones.
(This formula is sometimes called the Hartley function.) This is the maximum possible rate of information that can be transmitted with that alphabet. (The logarithm should be taken to a base appropriate for the unit of measurement in use.) The absolute rate is equal to the actual rate if the source is memoryless and has a uniform distribution.