Search results
Results from the WOW.Com Content Network
The magnetic field (B, green) is directed down through the plate. The Lorentz force of the magnetic field on the electrons in the metal induces a sideways current under the magnet. The magnetic field, acting on the sideways moving electrons, creates a Lorentz force opposite to the velocity of the sheet, which acts as a drag force on the sheet.
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
A very simple ferromagnetic structure A very simple antiferromagnetic structure A different simple antiferromagnetic arrangement in 2D. The term magnetic structure of a material pertains to the ordered arrangement of magnetic spins, typically within an ordered crystallographic lattice. Its study is a branch of solid-state physics.
The magnetization field or M-field can be defined according to the following equation: =. Where is the elementary magnetic moment and is the volume element; in other words, the M-field is the distribution of magnetic moments in the region or manifold concerned.
Working of the undulator. 1: magnets, 2: electron beam entering from the upper left, 3: synchrotron radiation exiting to the lower right. An undulator is an insertion device from high-energy physics and usually part of a larger installation, a synchrotron storage ring, or it may be a component of a free electron laser.
Paramagnetic materials are attracted to magnetic fields, hence have a relative magnetic permeability greater than one (or, equivalently, a positive magnetic susceptibility). The magnetic moment induced by the applied field is linear in the field strength, and it is rather weak. It typically requires a sensitive analytical balance to detect the ...
The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface). For the intrinsic order of magnitude of magnetic fields, see: Orders of magnitude (magnetic moment) .
When ferrimagnets are exposed to an external magnetic field, they display what is called magnetic hysteresis, where magnetic behavior depends on the history of the magnet. They also exhibit a saturation magnetization M rs {\displaystyle M_{\text{rs}}} ; this magnetization is reached when the external field is strong enough to make all the ...