enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Depolarization - Wikipedia

    en.wikipedia.org/wiki/Depolarization

    Depolarization is essential to the function of many cells, communication between cells, and the overall physiology of an organism. Action potential in a neuron, showing depolarization, in which the cell's internal charge becomes less negative (more positive), and repolarization, where the internal charge returns to a more negative value.

  3. Diad - Wikipedia

    en.wikipedia.org/wiki/Diad

    Voltage- gated calcium channels play a critical role in controlling the influx of calcium ions into the myocyte in response to the changing action potential of the sarcoplasmic membrane. [5] The increase in action potential of the cell indicates depolarization of the cell, directly opening the ion channels to cause muscular contraction.

  4. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    The ions exchanged during an action potential, therefore, make a negligible change in the interior and exterior ionic concentrations. The few ions that do cross are pumped out again by the continuous action of the sodium–potassium pump, which, with other ion transporters, maintains the normal ratio of ion concentrations across the membrane.

  5. T-tubule - Wikipedia

    en.wikipedia.org/wiki/T-tubule

    T-tubules (transverse tubules) are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells.With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.

  6. Neuromuscular junction - Wikipedia

    en.wikipedia.org/wiki/Neuromuscular_junction

    Synaptic transmission at the neuromuscular junction begins when an action potential reaches the presynaptic terminal of a motor neuron, which activates voltage-gated calcium channels to allow calcium ions to enter the neuron. Calcium ions bind to sensor proteins (synaptotagmins) on synaptic vesicles, triggering vesicle fusion with the cell ...

  7. End-plate potential - Wikipedia

    en.wikipedia.org/wiki/End-plate_potential

    When an action potential propagates down a nerve and reaches the axon terminal of the motor neuron, the change in membrane voltage causes the calcium voltage gated ion channels to open allowing for an influx of calcium ions. These calcium ions cause the acetylcholine vesicles attached to the presynaptic membrane to release acetylcholine via ...

  8. Chemical synapse - Wikipedia

    en.wikipedia.org/wiki/Chemical_synapse

    The electrical depolarization of the membrane at the synapse causes channels to open that are permeable to calcium ions. Calcium ions flow through the presynaptic membrane, rapidly increasing the calcium concentration in the interior. The high calcium concentration activates a set of calcium-sensitive proteins attached to vesicles that contain ...

  9. T-type calcium channel - Wikipedia

    en.wikipedia.org/wiki/T-type_calcium_channel

    The α 1 subunit of T-type calcium channels is similar in structure to the α subunits of K + (potassium ion) channels, Na + (sodium ion) channels, and other Ca 2+ (calcium ion) channels. The α 1 subunit is composed of four domains (I-IV), with each domain containing 6 transmembrane segments (S1-S6). The hydrophobic loops between the S5 and S6 ...