enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    An integer that occurs as the discriminant of a quadratic number field is called a fundamental discriminant. [3] Cyclotomic fields: let n > 2 be an integer, let ζ n be a primitive nth root of unity, and let K n = Q(ζ n) be the nth cyclotomic field. The discriminant of K n is given by [2] [4]

  3. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...

  4. Algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_field

    For this converse the field discriminant is needed. This is the Dedekind discriminant theorem. In the example above, the discriminant of the number field () with x 3 − x − 1 = 0 is −23, and as we have seen the 23-adic place ramifies. The Dedekind discriminant tells us it is the only ultrametric place that does.

  5. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    Each function is given a discriminant score [clarification needed] to determine how well it predicts group placement. Structure Correlation Coefficients: The correlation between each predictor and the discriminant score of each function. This is a zero-order correlation (i.e., not corrected for the other predictors). [15]

  6. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    This implies that, given a linear endomorphism of a finite-dimensional vector space, the determinant of the matrix that represents it on a basis does not depend on the chosen basis. This allows defining the determinant of a linear endomorphism, which does not depend on the choice of a coordinate system. Determinants occur throughout mathematics.

  7. Vandermonde matrix - Wikipedia

    en.wikipedia.org/wiki/Vandermonde_matrix

    Another way to derive the above formula is by taking a limit of the Vandermonde matrix as the 's approach each other. For example, to get the case of x 1 = x 2 {\displaystyle x_{1}=x_{2}} , take subtract the first row from second in the original Vandermonde matrix, and let x 2 → x 1 {\displaystyle x_{2}\to x_{1}} : this yields the ...

  8. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    [8] [9] Some authors define the Jacobian as the transpose of the form given above. The Jacobian matrix represents the differential of f at every point where f is differentiable. In detail, if h is a displacement vector represented by a column matrix , the matrix product J ( x ) ⋅ h is another displacement vector, that is the best linear ...

  9. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    Linear discriminant analysis (LDA), provides an efficient way of eliminating the disadvantage we list above. As we know, the discriminative model needs a combination of multiple subtasks before classification, and LDA provides appropriate solution towards this problem by reducing dimension.