Search results
Results from the WOW.Com Content Network
An integer that occurs as the discriminant of a quadratic number field is called a fundamental discriminant. [3] Cyclotomic fields: let n > 2 be an integer, let ζ n be a primitive nth root of unity, and let K n = Q(ζ n) be the nth cyclotomic field. The discriminant of K n is given by [2] [4]
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...
For this converse the field discriminant is needed. This is the Dedekind discriminant theorem. In the example above, the discriminant of the number field () with x 3 − x − 1 = 0 is −23, and as we have seen the 23-adic place ramifies. The Dedekind discriminant tells us it is the only ultrametric place that does.
Each function is given a discriminant score [clarification needed] to determine how well it predicts group placement. Structure Correlation Coefficients: The correlation between each predictor and the discriminant score of each function. This is a zero-order correlation (i.e., not corrected for the other predictors). [15]
This implies that, given a linear endomorphism of a finite-dimensional vector space, the determinant of the matrix that represents it on a basis does not depend on the chosen basis. This allows defining the determinant of a linear endomorphism, which does not depend on the choice of a coordinate system. Determinants occur throughout mathematics.
Another way to derive the above formula is by taking a limit of the Vandermonde matrix as the 's approach each other. For example, to get the case of x 1 = x 2 {\displaystyle x_{1}=x_{2}} , take subtract the first row from second in the original Vandermonde matrix, and let x 2 → x 1 {\displaystyle x_{2}\to x_{1}} : this yields the ...
[8] [9] Some authors define the Jacobian as the transpose of the form given above. The Jacobian matrix represents the differential of f at every point where f is differentiable. In detail, if h is a displacement vector represented by a column matrix , the matrix product J ( x ) ⋅ h is another displacement vector, that is the best linear ...
Linear discriminant analysis (LDA), provides an efficient way of eliminating the disadvantage we list above. As we know, the discriminative model needs a combination of multiple subtasks before classification, and LDA provides appropriate solution towards this problem by reducing dimension.