enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work generally well.

  3. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not find any root, that does not necessarily mean that no root exists. Most numerical root-finding methods are iterative methods, producing a sequence of numbers that ideally converges towards a root as a limit.

  4. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    Then for each interval (A(x), M(x)) in the list, the algorithm remove it from the list; if the number of sign variations of the coefficients of A is zero, there is no root in the interval, and one passes to the next interval. If the number of sign variations is one, the interval defined by () and () is an isolating interval.

  5. Bisection method - Wikipedia

    en.wikipedia.org/wiki/Bisection_method

    In this case a and b are said to bracket a root since, by the intermediate value theorem, the continuous function f must have at least one root in the interval (a, b). At each step the method divides the interval in two parts/halves by computing the midpoint c = (a+b) / 2 of the interval and the value of the function f(c) at that point.

  6. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  7. Inverse quadratic interpolation - Wikipedia

    en.wikipedia.org/wiki/Inverse_quadratic...

    The asymptotic behaviour is very good: generally, the iterates x n converge fast to the root once they get close. However, performance is often quite poor if the initial values are not close to the actual root. For instance, if by any chance two of the function values f n−2, f n−1 and f n coincide, the algorithm fails completely. Thus ...

  8. Secant method - Wikipedia

    en.wikipedia.org/wiki/Secant_method

    In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .

  9. ITP method - Wikipedia

    en.wikipedia.org/wiki/ITP_Method

    Given a continuous function defined from [,] to such that () (), where at the cost of one query one can access the values of () on any given .And, given a pre-specified target precision >, a root-finding algorithm is designed to solve the following problem with the least amount of queries as possible: