Search results
Results from the WOW.Com Content Network
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
The molar mass of a substance depends not only on its molecular formula, but also on the distribution of isotopes of each chemical element present in it. For example, the molar mass of calcium-40 is 39.962 590 98 (22) g/mol, whereas the molar mass of calcium-42 is 41.958 618 01 (27) g/mol, and of calcium with the normal isotopic mix is 40.078(4 ...
The molecular mass and relative molecular mass are distinct from but related to the molar mass. The molar mass is defined as the mass of a given substance divided by the amount of the substance, and is expressed in grams per mol (g/mol). That makes the molar mass an average of many particles or molecules (potentially containing different ...
For the mass to mole step, the mass of copper (16.00 g) would be converted to moles of copper by dividing the mass of copper by its molar mass: 63.55 g/mol. () = Now that the amount of Cu in moles (0.2518) is found, we can set up the mole ratio.
The mole ratio is also called amount ratio. [2] If n i is much smaller than n tot (which is the case for atmospheric trace constituents), the mole ratio is almost identical to the mole fraction . Mass ratio
It is a dimensionless quantity with dimension of / and dimensionless unit of moles per mole (mol/mol or mol ⋅ mol-1) or simply 1; metric prefixes may also be used (e.g., nmol/mol for 10-9). [5] When expressed in percent , it is known as the mole percent or molar percentage (unit symbol %, sometimes "mol%", equivalent to cmol/mol for 10 -2 ).
It is also equal to the molar mass (M) divided by the mass density (ρ): = = The molar volume has the SI unit of cubic metres per mole (m 3 /mol), [ 1 ] although it is more typical to use the units cubic decimetres per mole (dm 3 /mol) for gases , and cubic centimetres per mole (cm 3 /mol) for liquids and solids .
For example, 50 g of zinc will react with oxygen to produce 62.24 g of zinc oxide, implying that the zinc has reacted with 12.24 g of oxygen (from the Law of conservation of mass): the equivalent weight of zinc is the mass which will react with eight grams of oxygen, hence 50 g × 8 g/12.24 g = 32.7 g.