Search results
Results from the WOW.Com Content Network
In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, [1] is an interpolation polynomial for a given set of data points. The Newton polynomial is sometimes called Newton's divided differences interpolation polynomial because the coefficients of the polynomial are calculated using Newton's ...
Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial. Neville's algorithm is based on the Newton form of the interpolating polynomial and the recursion relation for the divided differences.
Hermite interpolation problems are those where not only the values of the polynomial p at the nodes are given, but also all derivatives up to a given order. This turns out to be equivalent to a system of simultaneous polynomial congruences, and may be solved by means of the Chinese remainder theorem for polynomials.
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation.
Newton's method is one of many known methods of computing square roots. Given a positive number a, the problem of finding a number x such that x 2 = a is equivalent to finding a root of the function f(x) = x 2 − a. The Newton iteration defined by this function is given by
It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =.
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...