Search results
Results from the WOW.Com Content Network
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
Older processes with poor control of doping characteristics had the variation of Zener voltage up to ±1 V, newer processes using ion implantation can achieve no more than ±0.25 V. The NPN transistor structure can be employed as a surface Zener diode, with collector and emitter connected together as its cathode and base region as anode. In ...
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
In the Zener diode, the concept of PIV is not applicable. A Zener diode contains a heavily doped p–n junction allowing electrons to tunnel from the valence band of the p-type material to the conduction band of the n-type material, such that the reverse voltage is "clamped" to a known value (called the Zener voltage), and avalanche does not ...
These diodes can indefinitely sustain a moderate level of current during breakdown. The voltage at which the breakdown occurs is called the breakdown voltage . There is a hysteresis effect; once avalanche breakdown has occurred, the material will continue to conduct even if the voltage across it drops below the breakdown voltage.
These characteristics are also known as I–V curves, referring to the standard symbols for current and voltage. In electronic components with more than two terminals, such as vacuum tubes and transistors, the current–voltage relationship at one pair of terminals may depend on the current or voltage on a third terminal. This is usually ...
A thyristor (/ θ aɪ ˈ r ɪ s t ər /, from a combination of Greek language θύρα, meaning "door" or "valve", and transistor [1]) is a solid-state semiconductor device which can be thought of as being a highly robust and switchable diode, allowing the passage of current in one direction but not the other, often under control of a gate electrode, that is used in high power applications ...
For rectifier applications, peak inverse voltage (PIV) or peak reverse voltage (PRV) is the maximum value of reverse voltage which occurs at the peak of the input cycle when the diode is reverse-biased. [4] [5] The portion of the sinusoidal waveform which repeats or duplicates itself is known as the cycle. The part of the cycle above the ...