enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alan Agresti - Wikipedia

    en.wikipedia.org/wiki/Alan_Agresti

    Alan Gilbert Agresti (born February 6, 1947) is an American statistician and Distinguished Professor Emeritus at the University of Florida. [1] He has written several textbooks on categorical data analysis that are considered seminal in the field.

  3. List of analyses of categorical data - Wikipedia

    en.wikipedia.org/wiki/List_of_analyses_of...

    List of analyses of categorical data. 2 languages ... Download as PDF; ... This is a list of statistical procedures which can be used for the analysis of categorical ...

  4. Simpson's paradox - Wikipedia

    en.wikipedia.org/wiki/Simpson's_paradox

    Simpson's paradox for quantitative data: a positive trend ( , ) appears for two separate groups, whereas a negative trend ( ) appears when the groups are combined. Visualization of Simpson's paradox on data resembling real-world variability indicates that risk of misjudgment of true causal relationship can be hard to spot.

  5. Goodman and Kruskal's gamma - Wikipedia

    en.wikipedia.org/wiki/Goodman_and_Kruskal's_gamma

    In statistics, Goodman and Kruskal's gamma is a measure of rank correlation, i.e., the similarity of the orderings of the data when ranked by each of the quantities. It measures the strength of association of the cross tabulated data when both variables are measured at the ordinal level. It makes no adjustment for either table size or ties.

  6. Cochran–Armitage test for trend - Wikipedia

    en.wikipedia.org/wiki/Cochran–Armitage_test_for...

    The Cochran–Armitage test for trend, [1] [2] named for William Cochran and Peter Armitage, is used in categorical data analysis when the aim is to assess for the presence of an association between a variable with two categories and an ordinal variable with k categories.

  7. Categorical distribution - Wikipedia

    en.wikipedia.org/wiki/Categorical_distribution

    function draw_categorical(n) // where n is the number of samples to draw from the categorical distribution r = 1 s = 0 for i from 1 to k // where k is the number of categories v = draw from a binomial(n, p[i] / r) distribution // where p[i] is the probability of category i for j from 1 to v z[s++] = i // where z is an array in which the results ...

  8. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    It does this by representing data as points in a low-dimensional Euclidean space. The procedure thus appears to be the counterpart of principal component analysis for categorical data. [citation needed] MCA can be viewed as an extension of simple correspondence analysis (CA) in that it is applicable to a large set of categorical variables.

  9. Nominal category - Wikipedia

    en.wikipedia.org/wiki/Nominal_category

    A variable used to associate each data point in a set of observations, or in a particular instance, to a certain qualitative category is a categorical variable. Categorical variables have two types of scales, ordinal and nominal. [1] The first type of categorical scale is dependent on natural ordering, levels that are defined by a sense of quality.