enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bohr effect - Wikipedia

    en.wikipedia.org/wiki/Bohr_effect

    That is, the Bohr effect refers to the shift in the oxygen dissociation curve caused by changes in the concentration of carbon dioxide or the pH of the environment. Since carbon dioxide reacts with water to form carbonic acid, an increase in CO 2 results in a decrease in blood pH, [2] resulting in hemoglobin proteins releasing their load of ...

  3. Davenport diagram - Wikipedia

    en.wikipedia.org/wiki/Davenport_diagram

    Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”

  4. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    The heart is the driver of the circulatory system, pumping blood through rhythmic contraction and relaxation. The rate of blood flow out of the heart (often expressed in L/min) is known as the cardiac output (CO). Blood being pumped out of the heart first enters the aorta, the largest artery of the body.

  5. Oxygen–hemoglobin dissociation curve - Wikipedia

    en.wikipedia.org/wiki/Oxygen–hemoglobin...

    In the presence of disease or other conditions that change the hemoglobin oxygen affinity and, consequently, shift the curve to the right or left, the P 50 changes accordingly. An increased P 50 indicates a rightward shift of the standard curve, which means that a larger partial pressure is necessary to maintain a 50% oxygen saturation. This ...

  6. Chloride shift - Wikipedia

    en.wikipedia.org/wiki/Chloride_shift

    Chloride shift (also known as the Hamburger phenomenon or lineas phenomenon, named after Hartog Jakob Hamburger) is a process which occurs in a cardiovascular system and refers to the exchange of bicarbonate (HCO 3 −) and chloride (Cl −) across the membrane of red blood cells (RBCs).

  7. Starling equation - Wikipedia

    en.wikipedia.org/wiki/Starling_equation

    Efflux occurs along the whole length of a capillary. Fluid filtered to the space outside a capillary is mostly returned to the circulation via lymph nodes and the thoracic duct. [5] A mechanism for this phenomenon is the Michel-Weinbaum model, in honour of two scientists who, independently, described the filtration function of the glycocalyx.

  8. Motility - Wikipedia

    en.wikipedia.org/wiki/Motility

    These cellular movements can be directed by external stimuli, a phenomenon known as taxis. Examples include chemotaxis (movement along chemical gradients) and phototaxis (movement in response to light). Motility also includes physiological processes like gastrointestinal movements and peristalsis.

  9. Hemoglobin - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin

    The Bohr effect favors the T state rather than the R state. (shifts the O 2-saturation curve to the right). Conversely, when the carbon dioxide levels in the blood decrease (i.e., in the lung capillaries), carbon dioxide and protons are released from hemoglobin, increasing the oxygen affinity of the protein.