Search results
Results from the WOW.Com Content Network
Grey data points each represent a different DNA sequence position along the length of chromosome 2 as indicated on the x axis, with more positive values on the y-axis indicating earlier replication. A smoothed line (blue) is drawn through the data to visualize the domains of different replication timing.
Eukaryotic DNA replication. Eukaryotic DNA replication is a conserved mechanism that restricts DNA replication to once per cell cycle. Eukaryotic DNA replication of chromosomal DNA is central for the duplication of a cell and is necessary for the maintenance of the eukaryotic genome.
Animal testing, also known as animal experimentation, animal research, and in vivo testing, is the use of non-human animals, such as model organisms, in experiments that seek to control the variables that affect the behavior or biological system under study. This approach can be contrasted with field studies in which animals are observed in ...
A typical replication origin covers about 100-200 base pairs of DNA. Prokaryotes have one origin of replication per chromosome or plasmid but there are usually multiple origins in eukaryotic chromosomes. The human genome contains about 100,000 origins of replication representing about 0.3% of the genome. [25] [26] [27]
Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.
Un-repaired DNA damages accumulate in non-replicating cells, such as cells in the brains or muscles of adult mammals, and can cause aging. [3] [4] [5] (Also see DNA damage theory of aging.) In replicating cells, such as cells lining the colon, errors occur upon replication of past damages in the template strand of DNA or during repair of DNA ...
The chromid is smaller than the chromosome, and so takes a shorter amount of time to finish replication. For this reason, replication of the chromid is delayed to coordinate replication termination between the chromosome and chromid. [25] Earlier replication of the chromosome compared with the chromid has also been observed in Ensifer meliloti ...
The reason non-reciprocal translocations are dangerous is the possibility of producing a dicentric chromosome – a chromosome with two centromeres. When dicentric chromosomes form, a series of events can occur called a breakage-fusion-bridge cycle : Spindle fibers attach onto both centromeres in different locations on the chromosome, thereby ...