enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  3. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  4. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    By considering the complete quotients of periodic continued fractions, Euler was able to prove that if x is a regular periodic continued fraction, then x is a quadratic irrational number. The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy.

  5. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    The Archimedean property: any point x before the finish line lies between two of the points P n (inclusive).. It is possible to prove the equation 0.999... = 1 using just the mathematical tools of comparison and addition of (finite) decimal numbers, without any reference to more advanced topics such as series and limits.

  6. Midy's theorem - Wikipedia

    en.wikipedia.org/wiki/Midy's_theorem

    In mathematics, Midy's theorem, named after French mathematician E. Midy, [1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period (sequence A028416 in the OEIS). If the period of the decimal representation of a/p is 2n, so that

  7. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A conventional way to indicate a repeating decimal is to place a bar (known as a vinculum) over the digits that repeat, for example 0. 789 = 0.789789789.... For repeating patterns that begin immediately after the decimal point, the result of the conversion is the fraction with the pattern as a numerator, and the same number of nines as a ...

  8. Balanced ternary - Wikipedia

    en.wikipedia.org/wiki/Balanced_ternary

    Some balanced ternary fractions have multiple representations too. For example, ⁠ 1 / 6 ⁠ = 0.1 𝖳 bal3 = 0.0 1 bal3. Certainly, in the decimal and binary, we may omit the rightmost trailing infinite 0s after the radix point and gain a representations of integer or terminating fraction.

  9. Cyclic number - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number

    Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of 1/(L + 1). Conversely, if the digital period of 1/p (where p is prime) is p − 1, then the digits represent a cyclic number. For example: 1/7 = 0.142857 142857...