enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Largest differencing method - Wikipedia

    en.wikipedia.org/wiki/Largest_differencing_method

    This solution is not optimal; a better partitioning is provided by the grouping ({5,5},{3,3,4},{1,4,5}). There is evidence for the good performance of LDM: [ 2 ] Simulation experiments show that, when the numbers are uniformly random in [0,1], LDM always performs better (i.e., produces a partition with a smaller largest sum) than greedy number ...

  3. Multiway number partitioning - Wikipedia

    en.wikipedia.org/wiki/Multiway_number_partitioning

    [1]: sec.5 The problem is parametrized by a positive integer k, and called k-way number partitioning. [2] The input to the problem is a multiset S of numbers (usually integers), whose sum is k*T. The associated decision problem is to decide whether S can be partitioned into k subsets such that the sum of each subset is exactly T.

  4. Greedy number partitioning - Wikipedia

    en.wikipedia.org/wiki/Greedy_number_partitioning

    In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...

  5. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    Equal-cardinality partition is a variant in which both parts should have an equal number of items, in addition to having an equal sum. This variant is NP-hard too. [5]: SP12 Proof. Given a standard Partition instance with some n numbers, construct an Equal-Cardinality-Partition instance by adding n zeros. Clearly, the new instance has an equal ...

  6. Balanced number partitioning - Wikipedia

    en.wikipedia.org/wiki/Balanced_number_partitioning

    Balanced number partitioning is a variant of multiway number partitioning in which there are constraints on the number of items allocated to each set. The input to the problem is a set of n items of different sizes, and two integers m, k. The output is a partition of the items into m subsets, such that the number of items in each subset is at ...

  7. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    dc: "Desktop Calculator" arbitrary-precision RPN calculator that comes standard on most Unix-like systems. KCalc, Linux based scientific calculator; Maxima: a computer algebra system which bignum integers are directly inherited from its implementation language Common Lisp. In addition, it supports arbitrary-precision floating-point numbers ...

  8. Relocation (computing) - Wikipedia

    en.wikipedia.org/wiki/Relocation_(computing)

    Relocation is the process of assigning load addresses for position-dependent code and data of a program and adjusting the code and data to reflect the assigned addresses. [1] [2] Prior to the advent of multiprocess systems, and still in many embedded systems, the addresses for objects are absolute starting at a known location, often zero.

  9. Binary space partitioning - Wikipedia

    en.wikipedia.org/wiki/Binary_space_partitioning

    Binary space partitioning arose from computer graphics needing to rapidly draw three-dimensional scenes composed of polygons. A simple way to draw such scenes is the painter's algorithm , which produces polygons in order of distance from the viewer, back to front, painting over the background and previous polygons with each closer object.