enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonal complement - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_complement

    Informally, it is called the perp, short for perpendicular complement. It is a subspace of . Example. Let = (, , ) be the vector ...

  3. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The nines' complement of a decimal digit is the number that must be added to it to produce 9; the nines' complement of 3 is 6, the nines' complement of 7 is 2, and so on, see table. To form the nines' complement of a larger number, each digit is replaced by its nines' complement.

  4. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In a three-dimensional Euclidean vector space, the orthogonal complement of a line through the origin is the plane through the origin perpendicular to it, and vice versa. [ 5 ] Note that the geometric concept of two planes being perpendicular does not correspond to the orthogonal complement, since in three dimensions a pair of vectors, one from ...

  5. Complemented subspace - Wikipedia

    en.wikipedia.org/wiki/Complemented_subspace

    In the branch of mathematics called functional analysis, a complemented subspace of a topological vector space, is a vector subspace for which there exists some other vector subspace of , called its (topological) complement in , such that is the direct sum in the category of topological vector spaces.

  6. Offset binary - Wikipedia

    en.wikipedia.org/wiki/Offset_binary

    Offset binary may be converted into two's complement by inverting the most significant bit. For example, with 8-bit values, the offset binary value may be XORed with 0x80 in order to convert to two's complement. In specialised hardware it may be simpler to accept the bit as it stands, but to apply its value in inverted significance.

  7. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement is named after Issai Schur [1] who used it to prove Schur's lemma, although it had been used previously. [2] Emilie Virginia Haynsworth was the first to call it the Schur complement. [3] The Schur complement is a key tool in the fields of numerical analysis, statistics, and matrix analysis.

  8. Complement (set theory) - Wikipedia

    en.wikipedia.org/wiki/Complement_(set_theory)

    If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...

  9. Complement graph - Wikipedia

    en.wikipedia.org/wiki/Complement_graph

    The complement of an edgeless graph is a complete graph and vice versa. Any induced subgraph of the complement graph of a graph G is the complement of the corresponding induced subgraph in G. An independent set in a graph is a clique in the complement graph and vice versa. This is a special case of the previous two properties, as an independent ...