enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for this principle is the Gaussian function , of substantial importance in probability theory and statistics as well as in the study of ...

  4. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    The inverse Fourier transform converts the frequency-domain function back to the time-domain function. A spectrum analyzer is a tool commonly used to visualize electronic signals in the frequency domain. A frequency-domain representation may describe either a static function or a particular time period of a dynamic function (signal or system).

  5. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    A typical use of this concept is the process of analytic continuation, that allows extending functions whose domain is a small part of the complex plane to functions whose domain is almost the whole complex plane. Here is another classical example of a function extension that is encountered when studying homographies of the real line.

  6. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...

  7. Fixed-point iteration - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_iteration

    In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .

  8. Heaviside step function - Wikipedia

    en.wikipedia.org/wiki/Heaviside_step_function

    Therefore the "step function" exhibits ramp-like behavior over the domain of [−1, 1], and cannot authentically be a step function, using the half-maximum convention. Unlike the continuous case, the definition of H[0] is significant. The discrete-time unit impulse is the first difference of the discrete-time step

  9. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]