Search results
Results from the WOW.Com Content Network
Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathematics are solutions of linear differential equations (see Holonomic function ).
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. [1] In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.
Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and economics. [1] In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.
Both differential equations will possess a single stationary point y = 0. First, the homogeneous linear equation dy / dt = ay ( a < 0 {\displaystyle a<0} ), a stationary solution is y ( t ) = 0 , which is obtained for the initial condition y (0) = 0 .
Kodaira also generalised Weyl's method to singular ordinary differential equations of even order and obtained a simple formula for the spectral measure. The same formula had also been obtained independently by E. C. Titchmarsh in 1946 (scientific communication between Japan and the United Kingdom had been interrupted by World War II ).
General linear methods (GLMs) are a large class of numerical methods used to obtain numerical solutions to ordinary differential equations.They include multistage Runge–Kutta methods that use intermediate collocation points, as well as linear multistep methods that save a finite time history of the solution.
The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.