enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    Thus, since the cardinality of is , the cardinality of the real transcendental numbers is =. A similar result follows for complex transcendental numbers, once we have proved that | C | = c {\displaystyle \left\vert \mathbb {C} \right\vert ={\mathfrak {c}}} .

  3. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  4. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.

  5. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    The cardinality of the natural numbers is denoted aleph-null (), while the cardinality of the real numbers is denoted by "" (a lowercase fraktur script "c"), and is also referred to as the cardinality of the continuum.

  6. Continuum (set theory) - Wikipedia

    en.wikipedia.org/wiki/Continuum_(set_theory)

    The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers , ℵ 0 {\displaystyle \aleph _{0}} , or alternatively, that c = ℵ 1 {\displaystyle {\mathfrak {c}}=\aleph _{1}} .

  7. Cardinal characteristic of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinal_characteristic_of...

    In the mathematical discipline of set theory, a cardinal characteristic of the continuum is an infinite cardinal number that may consistently lie strictly between (the cardinality of the set of natural numbers), and the cardinality of the continuum, that is, the cardinality of the set of all real numbers. The latter cardinal is denoted or .

  8. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    Notably, ℵ ω is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory not to be equal to the cardinality of the set of all real numbers 2 ℵ 0: For any natural number n ≥ 1, we can consistently assume that 2 ℵ 0 = ℵ n, and moreover it is possible to assume that 2 ℵ 0 is as least as large ...

  9. Complex-base system - Wikipedia

    en.wikipedia.org/wiki/Complex-base_system

    In arithmetic, a complex-base system is a positional numeral system whose radix is an imaginary (proposed by Donald Knuth in 1955 [1] [2]) or complex number (proposed by S. Khmelnik in 1964 [3] and Walter F. Penney in 1965 [4] [5] [6]).