Search results
Results from the WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
The correct result would be 1.2 × 5.6 = 6.72. For a more complicated example, suppose that the two numbers 1.2 and 5.6 are represented in 32-bit fixed point format with 30 and 20 fraction bits, respectively. Scaling by 2 30 and 2 20 gives 1 288 490 188.8 and 5 872 025.6, that round to 1 288 490 189 and 5 872 026, respectively. Both numbers ...
6 are red, and; 4 are yellow, then the ratio of red to white to yellow cars is 6 to 2 to 4. The ratio of yellow cars to white cars is 4 to 2 and may be expressed as 4:2 or 2:1. A ratio is often converted to a fraction when it is expressed as a ratio to the whole. In the above example, the ratio of yellow cars to all the cars on the lot is 4:12 ...
where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = 1 / 6 , B 4 = − + 1 / 30 , and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]
For instance, the rational numbers , , and are written as 0.1, 3.71, and 0.0044 in the decimal fraction notation. [100] Modified versions of integer calculation methods like addition with carry and long multiplication can be applied to calculations with decimal fractions. [ 101 ]
It is unknown whether these constants are transcendental in general, but Γ( 1 / 3 ) and Γ( 1 / 4 ) were shown to be transcendental by G. V. Chudnovsky. Γ( 1 / 4 ) / 4 √ π has also long been known to be transcendental, and Yuri Nesterenko proved in 1996 that Γ( 1 / 4 ), π, and e π are algebraically independent.
Most modern lenses use a standard f-stop scale, which is an approximately geometric sequence of numbers that corresponds to the sequence of the powers of the square root of 2: f /1, f /1.4, f /2, f /2.8, f /4, f /5.6, f /8, f /11, f /16, f /22, f /32, f /45, f /64, f /90, f /128, etc. Each element in the sequence is one stop lower than the ...
The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets = Which method is faster "by hand" depends on the ...