Search results
Results from the WOW.Com Content Network
For a system of the form (,, ′) =, some sources also require that the Jacobian matrix (,,) be non-singular in order to call this an implicit ODE [system]; an implicit ODE system satisfying this Jacobian non-singularity condition can be transformed into an explicit ODE system.
Heun's equation is a second-order linear ordinary differential equation (ODE) of the form + [+ +] + () = The condition = + + is taken so that the characteristic exponents for the regular singularity at infinity are α and β (see below).
First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.
Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution y 1 ( x ) {\displaystyle y_{1}(x)} is known and a second linearly independent solution y 2 ( x ) {\displaystyle y_{2}(x)} is desired.
The second-order autonomous equation = (, ′) is more difficult, but it can be solved [2] by introducing the new variable = and expressing the second derivative of via the chain rule as = = = so that the original equation becomes = (,) which is a first order equation containing no reference to the independent variable .
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
In mathematics, more specifically in the study of dynamical systems and differential equations, a Liénard equation [1] is a type of second-order ordinary differential equation named after the French physicist Alfred-Marie Liénard.
Low-order methods are more suitable than higher-order methods like the Dormand–Prince method of order five, if only a crude approximation to the solution is required. Bogacki and Shampine argue that their method outperforms other third-order methods with an embedded method of order two. The Butcher tableau for the Bogacki–Shampine method is: