Search results
Results from the WOW.Com Content Network
(1.1 × 10 19 lb = 5.0 × 10 18 kg, modern value is 5.15 × 10 18 kg) and states that "compared with the weight of the globe this mighty sum dwindles to insignificance". [ 26 ] Absolute figures for the mass of the Earth are cited only beginning in the second half of the 19th century, mostly in popular rather than expert literature.
Most of Earth's hydrosphere consists of Earth's global ocean. Earth's hydrosphere also consists of water in the atmosphere and on land, including clouds, inland seas, lakes, rivers, and underground waters. The mass of the oceans is approximately 1.35 × 10 18 metric tons or about 1/4400 of Earth's total mass.
Weight is the force exerted on a body by a gravitational field, and hence its weight depends on the strength of the gravitational field. Weight of a 1 kg mass at the Earth's surface is m × g; mass times the acceleration due to gravity, which is 9.81 newtons at the Earth's surface and is about 3.5 newtons at the surface of Mars. Since the ...
Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg −1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.
At 101.325 kPa (abs) and 20 °C (68 °F), air has a density of approximately 1.204 kg/m 3 (0.0752 lb/cu ft), according to the International Standard Atmosphere (ISA). At 101.325 kPa (abs) and 15 °C (59 °F), air has a density of approximately 1.225 kg/m 3 (0.0765 lb/cu ft ), which is about 1 ⁄ 800 that of water , according to the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
≡ 1 ft/(h⋅s) = 8.4 6 × 10 −5 m/s 2: foot per minute per second: fpm/s ≡ 1 ft/(min⋅s) = 5.08 × 10 −3 m/s 2: foot per second squared: fps 2: ≡ 1 ft/s 2 = 3.048 × 10 −1 m/s 2: gal; galileo: Gal ≡ 1 cm/s 2 = 10 −2 m/s 2: inch per minute per second: ipm/s ≡ 1 in/(min⋅s) = 4.2 3 × 10 −4 m/s 2: inch per second squared ...