Search results
Results from the WOW.Com Content Network
The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m, damping coefficient c, and spring constant k, it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping coefficient:
However, the unitless damping factor (symbol ζ, zeta) is often a more useful measure, which is related to α by = . The special case of ζ = 1 is called critical damping and represents the case of a circuit that is just on the border of oscillation. It is the minimum damping that can be applied without causing oscillation.
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
Here damping ratio is always less than one. Critically damped A critically damped response is the response that reaches the steady-state value the fastest without being underdamped. It is related to critical points in the sense that it straddles the boundary of underdamped and overdamped responses. Here, the damping ratio is always equal to one.
This page was last edited on 5 March 2021, at 23:04 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
= is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:
For a single damped mass-spring system, the Q factor represents the effect of simplified viscous damping or drag, where the damping force or drag force is proportional to velocity. The formula for the Q factor is: Q = M k D , {\displaystyle Q={\frac {\sqrt {Mk}}{D}},\,} where M is the mass, k is the spring constant, and D is the damping ...
The value that the damping coefficient must reach for critical damping in the mass-spring-damper model is: =. To characterize the amount of damping in a system a ratio called the damping ratio (also known as damping factor and % critical damping) is used. This damping ratio is just a ratio of the actual damping over the amount of damping ...