enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.

  3. Hilbert series and Hilbert polynomial - Wikipedia

    en.wikipedia.org/wiki/Hilbert_series_and_Hilbert...

    The Hilbert series of an algebra or a module is a special case of the Hilbert–Poincaré series of a graded vector space. The Hilbert polynomial and Hilbert series are important in computational algebraic geometry, as they are the easiest known way for computing the dimension and the degree of an algebraic variety defined by explicit ...

  4. Hilbert curve - Wikipedia

    en.wikipedia.org/wiki/Hilbert_curve

    Because it is space-filling, its Hausdorff dimension is 2 (precisely, its image is the unit square, whose dimension is 2 in any definition of dimension; its graph is a compact set homeomorphic to the closed unit interval, with Hausdorff dimension 1). The Hilbert curve is constructed as a limit of piecewise linear curves.

  5. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    This definition applies to a Banach space, but of course other types of space exist as well; for example, topological vector spaces include Banach spaces, but can be more general. [12] [13] On the other hand, Banach spaces include Hilbert spaces, and it is these spaces that find the greatest application and the richest theoretical results. [14]

  6. Weak convergence (Hilbert space) - Wikipedia

    en.wikipedia.org/wiki/Weak_convergence_(Hilbert...

    The first three functions in the sequence () = ⁡ on [,].As converges weakly to =.. The Hilbert space [,] is the space of the square-integrable functions on the interval [,] equipped with the inner product defined by

  7. Hilbert transform - Wikipedia

    en.wikipedia.org/wiki/Hilbert_transform

    The Hilbert transform can be understood in terms of a pair of functions f(x) and g(x) such that the function = + is the boundary value of a holomorphic function F(z) in the upper half-plane. [32] Under these circumstances, if f and g are sufficiently integrable, then one is the Hilbert transform of the other.

  8. Compact operator on Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Compact_operator_on...

    In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm.

  9. Hilbert manifold - Wikipedia

    en.wikipedia.org/wiki/Hilbert_manifold

    In mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold provides a possibility of extending the theory of manifolds to infinite-dimensional setting.